

DPG-Frühjahrstagung 2023, Hannover, DD 27.12

Faculty of Electrical **Engineering and** Computing

Co-funded by the Erasmus+ Programme of the European Union

Evaluating digital experimental tasks for physics laboratory courses

Simon Z. Lahme^{1,a}, Lucija Rončević², Pekka Pirinen³, Ana Sušac², Antti Lehtinen³, Andreas Müller⁴ and Pascal Klein¹ ¹ University of Göttingen, Germany; ² University of Zagreb, Croatia; ³ University of Jyväskylä, Finland; ⁴ University of Geneva, Switzerland ^a Contact: Friedrich-Hund Platz 1, DE-37077 Göttingen, simon.lahme@uni-goettingen.de

Motivation & goals Lab concepts usually follow the approach of task-based learning

The Erasmus+ project DigiPhysLab

> Cooperation between the Universities of Jyväskylä (FI), Göttingen (DE) & Zagreb (HR), cofunded by the Erasmus+ program of the European Union (03/21-02/23)

- > Good experimental tasks are the main learning opportunity in lab courses
- > New developed tasks need to be evaluated & re-designed based on the findings

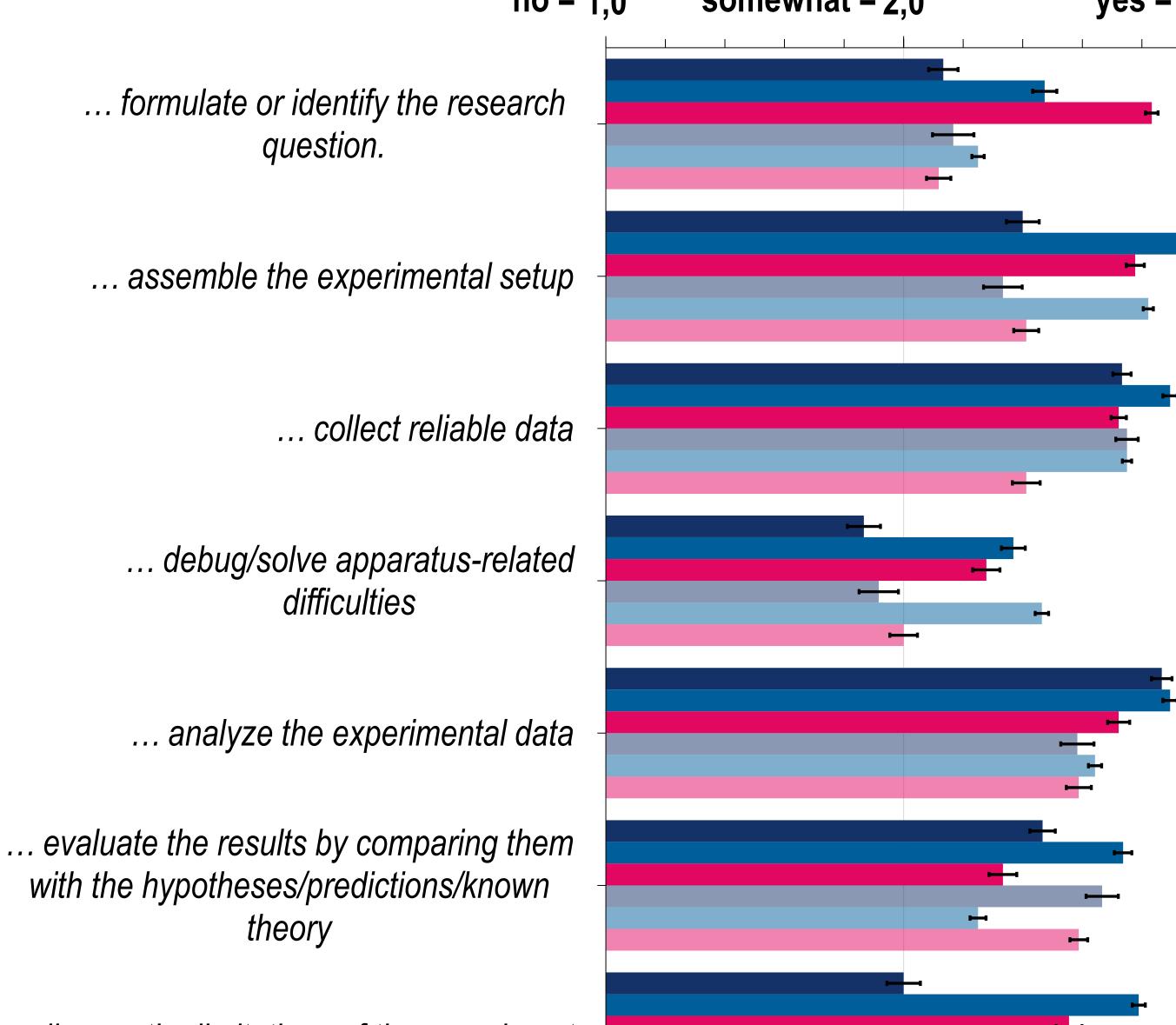
> Already two evaluation approaches exist:

- > Evaluation of a lab course in its entirety, e.g., its teaching quality (PraQ, [1])
- > Assessment of students' acquisition of specific competencies
 - e.g., for experimental skills [2,3], the acquisition of expert-like views on experimental physics (E-CLASS, [4]) the improvement of conceptual understanding [5], or critical thinking (PLIC, [6])
- But: typical lab courses consist of multiple tasks & development of competencies takes place on a larger time scale than the execution of single tasks
- \rightarrow Both approaches are unsuitable for evaluating single experimental tasks
- \rightarrow Need for a new instrument focusing on the experimental task

- > Main objectives/intellectual outputs [7]
 - > Development of a framework for designing experimental tasks [8]
 - Production of 15 competence-centered, digital physics lab tasks for on-campus & **distance learning** (instructions for students and instructors)
 - > Standalone experimental tasks (independent from a specific lab concept)
 - > Data collection with smartphone & digital data analysis
 - > Main target group: physics major & teacher students in the study entry phase
 - > Pilot and evaluation of the tasks with students in our faculties using the presented questionnaire and accompanying interviews

→ Dissemination of all materials as OER on our project website

Development of the evaluation questionnaire


- Development followed two guiding questions:
 - > To what extent are the developed experimental tasks from students' point of view suitable for university education?
 - \succ How do students experience working on the experimental task?
- Discursive development and structuring of items within our project group based on literature (e.g., [9,10]) and own experiences/interests

Example dat	a						For more information
Task	Α	В	С	D	Е	F	about the tasks please
N participants	15	19	18	13	28	17	visit poster DD 27.1!
Experimental activities in focus In this task I had to						 Task A Task B Task D Task E Task F 	
				no	= 1.0		somewhat = $2,0$ yes = $3,0$

Communicative validation with 2-3 students in each language (mostly native speakers)

→ Questionnaire available in four languages: English, German, Finnish & Croatian

Aspects	# Items	Scale	Example items
Personal information	8 + 1 open	nominal & 5- point scale	 What is your major field of study? In general, where would you put doing lab experiments on the scale from interesting to boring?
Efficacy/ perceived learning gains	7	5-point scale strongly disagree – strongly agree	 After completing the task ➤ I could explain the physical concepts in this task to someone else. ➤ I feel like I learned something new.
Adequacy of the task	13	5-point scale strongly disagree – strongly agree & nominal	 The task instructions were easy to understand. This experimental task was too easy/adquately challenging/too difficult for my level of study.
Students' experience during the task	12	5-point scale strongly disagree – strongly agree	 During this task, I felt frustrated. I had opportunities to make my own decisions about the experiment.
Experimental activities in focus	15	no – somewhat - yes	 In this task I had to ➢ formulate my own hypothesis. ➢ collect reliable data.
Use of digital technology in the task	7 +1 open	5-point scale strongly disagree – strongly agree	 Digital technologies made this task interesting. The effort to learn how to use digital technologies in this task was worthwhile.
Final questions	1 +3 open		 What did you like about the task? And why? What would you change in this task? And why?

Outlook

- \succ Questionnaire allows evaluation of experimental tasks within the DigiPhysLab-project and beyond to improve tasks and lab course concepts
- > Further statistic and expert validation of the instrument is needed

experiment

Literature

[1] Rehfeldt, D. (2017). Erfassung der Lehrqualität naturwissenschaftlicher Experimentalpraktika. Berlin, Logos.

[2] Schreiber, N. (2012). *Diagnostik experimenteller Kompetenz*. Berlin, Logos.

[3] Bauer, A. (2023). Experimentelle Kompetenz Physikstudierender. Thesis, Universität Paderborn. https://doi.org/10.17619/UNIPB/1-1652

[4] Zwickl., B. M., Hirokawa, T., Finkelstein, N., & Lewandowski, H. J. (2014). Epistemology and expectations survey about experimental physics. PHYS REV SPEC TOP-PH., 10, 010120. [5] Holmes, N. G., Olsen, J., Thomas, J. L., & Wieman, C. E. (2017). Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content. *Phys. Rev. Phys. Educ.* Res., **13**(1), 010129.

[6] Walsh, C., Quinn, K. N., Wieman, C., & Holmes, N. G. (2019). Quantifying critical thinking. *Phys. Rev. Phys. Educ. Res.*, 15, 010135.

[7] Lahme, S. Z., Klein, P., Lehtinen, A., Müller, A., Pirinen, P., Susac, A., & Tomrlin, B. (2022). DigiPhysLab: Digital Physics Laboratory Work for Distance Learning. PhyDid B, 383-390. [8] Lahme, S. Z., Pirinen, P., Roncevic, L., Lehtinen, A., Susac, A., Müller, A., & Klein, P. (2023). A framework for designing experimental tasks in contemporary physics lab courses. Preprint on arXiv, submitted to the proceedings of GIREP conference Ljubljana 2022. http://dx.doi.org/10.48550/arXiv.2302.14464

[9] Pekrun, R., Vogl, E., Muis, K. R., & Sinatra, G. M. (2017). Measuring emotions during epistemic activities: The Epistemically-Related Emotion Scales. Cogn. Emot., 31(6), 1268-1276. [10] Trình-Bá, T. (2016) Development of a course on integrating ICT into inquiry-based science education. Thesis, Vrije Universiteit Amsterdam. https://research.vu.nl/en/publications/9a4434c0-9e95-4b8e-b150-4b230b546578